On Ks, t minors in (s+t)-chromatic graphs

نویسنده

  • Alexandr V. Kostochka
چکیده

Let K∗ s,t denote the graph obtained from the complete graph Ks+t by deleting the edges of some Kt -subgraph. We prove that for each fixed s and sufficiently large t, every graph with chromatic number s+t has a K∗ s,t minor. 2010 Wiley Periodicals, Inc. J Graph Theory 65: 343–350, 2010 MSC 2000: 05 C 15; 05 C 83

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ks,t minors in (s + t)-chromatic graphs

Alexandr Kostochka In search of ways to attack Hadwiger’s Conjecture, Woodall and independently Seymour suggested to prove the weaker conjecture that Every (s + t)-chromatic graph has a Ks,t-minor. If the conjecture were true for all values of s and t, it would imply that for k ≥ 2 every (2k − 2)-chromatic graph has a Kk-minor. The conjecture is evident for s = 1. The validity of the conjecture...

متن کامل

Ks, t Minors in (s+t)- Chromatic Graphs, II

Let K∗ s,t denote the graph obtained from the complete graph Ks+t by deleting the edges of some Kt-subgraph. The author proved earlier that for each fixed s and t > t0(s) := max{415s 2+s, (240s log2 s)8s log2 s+1}, every graph with chromatic number s + t has a K∗ s,t minor. This confirmed a partial case of the corresponding conjecture by Woodall and Seymour. In this paper we show that the state...

متن کامل

Dense graphs have K3, t minors

Let K ∗ 3,t denote the graph obtained from K3,t by adding all edges between the three vertices of degree t in it. We prove that for each t ≥ 6300 and n ≥ t + 3, each n-vertex graph G with e(G) > 1 2 (t + 3)(n− 2)+ 1 has a K ∗ 3,t -minor. The bound is sharp in the sense that for every t , there are infinitely many graphs Gwith e(G) = 2 (t+ 3)(|V (G)|− 2)+ 1 that have no K3,t -minor. The result c...

متن کامل

On Ks, t-minors in graphs with given average degree

Let D(H) be the minimum d such that every graph G with average degree d has an H-minor. Myers and Thomason found good bounds onD(H) for almost all graphsH and proved that for ‘balanced’H random graphs provide extremal examples and determine the extremal function. Examples of ‘unbalanced graphs’ are complete bipartite graphs Ks,t for a fixed s and large t. Myers proved upper bounds on D(Ks,t ) a...

متن کامل

On Ks, t-minors in graphs with given average degree, II

Let K∗ s,t denote the graph obtained from Ks,t by adding all edges between the s vertices of degree t in it. We show how to adapt the argument of an our previous paper (Discrete Math. 308 (2008), 4435–4445) to prove that if t/ log2 t ≥ 1000s, then every graph G with average degree at least t + 8s log2 s has a K∗ s,t minor. This refines a corresponding result by Kühn and Osthus. AMS Subject Clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2010